Abstract

Cathepsin D (CD) is overexpressed in several types of cancer and constitutes an important biological target. Pepstatin A, a pentapeptide incorporating two non-proteinogenic statin residues, is among the most potent inhibitor of CD but lacks selectivity and suffers from poor bioavailability. Eight analogues of Pepstatin A, were synthesized, replacing residues in P3 or P1 position by non-canonical (S)- and (R)-α-Trifluoromethyl Alanine (TfmAla), (S)- and (R)-Trifluoromethionine (TFM) or non-natural d-Valine. The biological activities of those analogues were quantified on isolated CD and Pepsin by fluorescence-based assay (FRET) and cytotoxicity of the best fluorinated inhibitors was evaluated on SKOV3 ovarian cancer cell line. (R)-TFM based analog of Pepstatin A (compound 6) returned a sub-nanomolar IC50 against CD and an increased selectivity. Molecular Docking experiments could partially rationalize these results. Stabilized inhibitor 6 in the catalytic pocket of CD showed strong hydrophobic interactions of the long and flexible TFM side chain with lipophilic residues of S1 and S3 sub-pockets of the catalytic pocket. The newly synthesized inhibitors returned no cytotoxicity at IC50 concentrations on SKOV3 cancer cells, however the compounds derived from (S)-TfmAla and (R)-TFM led to modifications of cells morphologies, associated with altered organization of F-actin and extracellular Fibronectin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.