Abstract
Twenty-six novel tricyclic sophoridinic and matrinic derivatives containing a common chlorinated benzene fragment were designed, synthesized and evaluated for their anti-ebolavirus (EBOV) activities. Structureactivity relationship analysis indicated: (i) 12N-dichlorobenzyl motif was beneficial for the activity; (ii) the chiral configuration at C5 atom might not affect the activity much. Among the target compounds, compound 7d exhibited the most potent potency against EBOV with an IC50 value of 5.29 μmol/L and an SI value of over 37.8. Further in vivo anti-EBOV assay of 7d identified its high effectiveness, and in vivo anti-MARV assay of 7d suggested its inspiring broad-spectrum anti-filovirus activity. The results provided powerful information on further strategic optimization and development of this kind of compounds against filoviruses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.