Abstract

Eighteen novel N-2,4-dimethoxyphenyl dithiolopyrrolone derivatives inhibiting bacterial RNA polymerase (RNAP) were synthesized based on dithiolopyrrolone scaffold. Some compounds displayed potent antimicrobial activity against Gram-positive bacteria of Staphylococcus aureus and Streptococcus pneumoniae, but not the Gram-negative bacteria of Escherichia coli and Pseudomonas aeruginosa. Moreover, the most promising compound 7b showed potent antibacterial activity against clinical isolates of MRSA, VRSA, RRSA, and MPRSP with MIC values in the range of 0.125–2 μg/mL, and potent inhibitory activity against Escherichia coli RNAP with IC50 value of 19.4 ± 1.3 μM. In addition, compound 7b showed cytotoxicity against LO2 cells with IC50 value of 18.5 ± 1.89 μM. Molecular docking studies revealed that compound 7b interacted with the switch region of the bacterial RNAP. Taken together, compound 7b might serve as a lead structure for developing potent bacterial RNAP inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.