Abstract

Histone deacetylases (HDAC) regulate post-translational acetylation and the inhibition of these enzymes has emerged as an intriguing disease therapeutic. Among them, class IIb HDAC6 has the unique characteristic of mainly deacetylating cytoplasmic proteins, suggesting clinical applications for neurodegenerative diseases, inflammation, and cancer. In this study, we designed a novel N-benzyltriazolyl-hydroxamate scaffold based on the known HDAC6 inhibitors nexturastat A and tubastatin A. Among the 27 derivatives, 3-fluoro-4-((3-(2-fluorophenyl)-1H-1,2,4-triazol-1-yl)methyl)-N-hydroxybenzamide 4u (HDAC6 IC50 = 7.08 nM) showed nanomolar HDAC6 inhibitory activity with 42-fold selectivity over HDAC1. Structure-activity relationship (SAR) and computational docking studies were conducted to optimize the triazole capping group. Docking analysis revealed that the capping group aligned with the conserved L1 pocket of HDAC6 and was associated with subtype selectivity. Overall, our study explored the triazole-based biaryl capping group and its substitution and orientation, suggesting a rationale for the design of HDAC6-selective inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.