Abstract
Recently, we designed and synthesized a series of pyrroloquinoxaline compounds with hydrazine moiety linking a nitrogen-containing polycyclic group to a heteroaroyl system. Several derivatives, with attractive drug-like properties, were identified as promising cytotoxic agents, showing excellent potency in a panel of cancer cell lines. In the current study, we synthesized a further 19 new analogues to optimize their physicochemical properties and assess a coherent mechanism of action. Several chemical modifications were made to the reference compounds by varying the fused-ring system and/or the heteroacyl moiety. To evaluate their in vitro activity, we tested these compounds in six human cancer cell lines derived from different origins. Among them, two compounds ( and ) showed similar potency as the reference compounds with IC50 values in the sub-micromolar range in all cell lines tested. Furthermore, compound showed excellent in vivo efficacy in our preliminary human ovarian cancer mouse xenograft studies. Flow cytometric studies indicated that both derivatives interrupted cell cycle progression in colorectal cancer HCT116 cell lines and ovarian cancer SKOV-3 cells. Further mechanistic studies revealed that and were able to induce reactive oxygen species in SKOV-3 cells with apparently different kinetic patterns. Considering their cytotoxicity profiles in a variety of in vitro and in vivo cancer models, these hydrazide based compounds seem to have considerable potentials as novel chemotherapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.