Abstract
A series of novel d-glucose-derived 1,2,3-triazoles have been synthesized in excellent yields via Cu(I)-catalyzed 1,3-dipolar cycloaddition by using methyl α-d-glucopyranoside as starting material. All the new compounds were confirmed by 1H NMR, 13C NMR, IR, MS, and HRMS spectra, and their antimicrobial activities were screened against Gram-Positive, Gram-Negative bacteria, and fungi. Bioactive assay manifested that some of the synthesized glucose-derived 1,2,3-triazoles exhibited good antibacterial and antifungal activities. Notably, compound 5k gave the most potent efficiency with MIC50 value of 6 µM against Candida albicans, which was nine-fold more active than the reference drug Fluconazole. It also exhibited good antibacterial activity against Escherichia coli with the MIC50 value of 10.8 µM compared to Chloramphenicol while the corresponding hydrochloride 4k revealed remarkable inhibitory against Bacillus subtilis with an MIC50 value of 11 µM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.