Abstract

Compared with traditional anti-tumor drugs, antimicrobial peptides as novel anti-tumor agents have prominent advantages of higher specificity and circumvention of multi-drug resistance. BP100 is a multifunctional membrane-active peptide with high antimicrobial activity. Taking BP100 as a lead peptide, we designed and synthesized a series of aliphatic chain-conjugated peptides through solid-phase synthesis. Biological evaluation revealed that these peptides exhibited better anti-cancer activity than BP100. Further investigations revealed that these peptides could disrupt the cell membrane and trigger the cytochrome C release into cytoplasm, which ultimately resulted in apoptosis. Meanwhile, these peptides also exhibited effective anti-tumor activity against multidrug resistant cells and had multidrug resistance-reversing effect. Additionally, conjugation of aliphatic acid to those peptides could enhance their stability in plasma. In conclusion, aliphatic acid-modified peptides might be promising anti-tumor agents for cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.