Abstract
Photodynamic therapy (PDT) is a non-invasive treatment method for tumors by exciting photosensitizers (PS) upon light irradiation to generate cytotoxic reactive oxygen species (ROS). However, the low oxygen concentration near the tumor tissue limits the therapeutic effect of PDT. Herein, we synthesized six chlorin e6 derivatives containing NO-donors to enhance their antitumor activity by synergistic effect of ROS and NO. The results revealed that the new NO-donor containing photosensitizers (PS-NO) exhibited more potent photodynamic activity than chlorin e6, and the introduction of NO donor moieties to chlorin e6 increased the level of NO and ROS in cells. The addition of Ferrostatin-1, a ferroptosis inhibitor, markedly reduced the photodynamic activity of PS-NO as well as the level of NO and ROS in cells. Mechanism studies further showed that PS-NO could reduce intracellular GSH level, inhibit GPX4 activity and promote malondialdehyde (MDA) accumulation upon light irradiation, which suggested the ferroptosis mechanism underlying the PDT effect of PS-NO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.