Abstract

Drug repurposing approach was applied to find a potent antiviral agent against RNA viruses such as SARS-CoV-2, influenza viruses and dengue virus with a concise strategy of small change in parent molecular structure. For this purpose, β-D-N4-hydroxycytidine (NHC, 1) with a broad spectrum of antiviral activity was chosen as the parent molecule. Among the prepared NHC analogs (8a-g, and 9) from uridine, β-D-N4-O-isobutyrylcytidine (8a) showed potent activity against SARS-CoV-2 (EC50 3.50 μM), Flu A (H1N1) (EC50 5.80 μM), Flu A (H3N2) (EC50 7.30 μM), Flu B (EC50 3.40 μM) and DENV-2 (EC50 3.95 μM) in vitro. Furthermore, its potency against SARS-CoV-2 was >5-fold, 3.4-fold, and 3-fold compared to that of NHC (1), MK-4482 (2), and remdesivir (RDV) in vitro, respectively. Ultimately, compound 8a was expected to be a potent inhibitor toward RNA viruses as a viral mutagenic agent like MK-4482.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.