Abstract

As cancer remains one of the major health burdens worldwide, novel agents, due to the development of resistance, are needed. In this work, we designed and synthesized harmirins, which are hybrid compounds comprising harmine and coumarin scaffolds, evaluated their antiproliferative activity, and conducted cell localization and cell cycle analysis experiments. Harmirins were prepared from the corresponding alkynes and azides under mild reaction conditions using Cu(I) catalyzed azide–alkyne cycloaddition, leading to the formation of the 1H-1,2,3-triazole ring. Antiproliferative activity of harmirins was evaluated in vitro against four human cancer cell lines (MCF-7, HCT116, SW620, and HepG2) and one human non-cancer cell line (HEK293T). The most pronounced activities were exerted against MCF-7 and HCT116 cell lines (IC50 in the single-digit micromolar range), while the most selective harmirins were 5b and 12b, substituted at C-3 and O-7 of the β-carboline core and bearing methyl substituent at position 6 of the coumarin ring (SIs > 7.2). Further experiments demonstrated that harmirin 12b is localized exclusively in the cytoplasm. In addition, it induced a strong G1 arrest and reduced the percentage of cells in the S phase, suggesting that it might exert its antiproliferative activity through inhibition of DNA synthesis, rather than DNA damage. In conclusion, harmirin 12b is a novel harmine and coumarin hybrid with significant antiproliferative activity and warrants further evaluation as a potential anticancer agent.

Highlights

  • Introduction19.3 million new patients and causing nearly 10 million deaths in 2020

  • Cancer remains one of the greatest global health burdens, affecting an estimated19.3 million new patients and causing nearly 10 million deaths in 2020

  • From harmine-based azides and coumarin alkynes (4 and 5) and coumarin azides and harmine-based alkynes (11–13), respectively. The evaluation of their antiproliferative activity in vitro against a panel of human cell lines revealed that seven harmirins display activities in the single-digit micromolar range against MCF-7 and HCT116

Read more

Summary

Introduction

19.3 million new patients and causing nearly 10 million deaths in 2020. The most commonly diagnosed cancers are breast, lung, colorectal, prostate, and stomach, with lung cancer being the leading cause of cancer death [1]. In 2020/2021, the diagnosis and treatment of cancer were negatively affected by the COVID-19 pandemic. This may have led to a false decline in cancer incidence, but the true impact of delays in diagnosis and treatment will only become apparent in subsequent years [2]. The silent pandemic of anticancer drug resistance is developing in the background, leading to cancer recurrence and treatment failures [3]. There is still a constant need for new effective anticancer agents

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call