Abstract
Current therapeutic approaches to cancer are not fully effective, and so development of more effective treatment is needed. Auger-electron therapy and photodynamic therapy have attracted marked attentions as a promising strategy in cancer treatment. In this study, we synthesized [125I]BH-2/BH-2, which comprised Hoechst and 2,6-diiodo-substituted BODIPY, and evaluated its usefulness as a bi-modal agent for Auger-electron/photodynamic therapy by comparison with the previously reported compound [125I]BH/BH. [125I]BH-2 was obtained at a 13% radiochemical yield. [125I]BH-2 showed similar uptake into the nucleus to [125I]BH, suggesting that Hoechst can function as a nuclear localization tag. HeLa cell viabilities were reduced in both cells exposed to [125I]BH-2 and [125I]BH. γ-H2AX foci in HeLa cells exposed to [125I]BH-2 or [125I]BH were increased in a dose-dependent manner, indicating that DNA double-strand breaks may have occurred. No significant difference was observed between [125I]BH-2 and [125I]BH at these investigations. For PDT application, BH-2 showed a higher singlet oxygen quantum yield (ΦΔ) and caused superior photo-induced cytotoxicity in HeLa cells compared with BH. These results suggest that bi-modal [125I]BH-2/BH-2 can cause anti-tumor effects with Auger-electron and photodynamic therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.