Abstract

Phosphoglycerate mutase 1 (PGAM1) coordinates glycolysis, pentose phosphate pathway, and serine synthesis to promote tumor growth through the regulation of its substrate 3-phosphoglycerate (3 PG) and product 2-phosphoglycerate (2 PG). Herein, based on our previously reported PGAM1 inhibitor PGMI-004A, we have developed anthraquinone derivatives as novel allosteric PGAM1 inhibitors and the structure−activity relationship (SAR) was investigated. In addition, we determined the co-crystal structure of PGAM1 and the inhibitor 8g, demonstrating that the inhibitor was located at a novel allosteric site. Among the derivatives, compound 8t was selected for further study, with IC50 values of 0.25 and approximately 5 μM in enzymatic and cell-based assays, respectively. Mechanistically, compound 8t reduced the glycolysis and oxygen consumption rate in cancer cells, which led to decreased adenosine 5′-triphosphate (ATP) production and subsequent 5′ adenosine monophosphate-activated protein kinase (AMPK) activation. The inhibitor 8t also exhibited good efficacy in delaying tumor growth in H1299 xenograft model without obvious toxicity. Taken together, this proof-of-principle work further validates PGAM1 as a potential target for cancer therapy and provides useful information on anti-tumor drug discovery targeting PGAM1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call