Abstract

New tetrahydropyridinyl and piperidinyl ethylamine derivatives were designed with hypothetical mapping on pharmacophore model generated from ligand-based virtual screening. The designed compounds were synthesized, and their inhibitory activities on T-type calcium channel were assayed using FDSS and patch-clamp assay. Among them, compounds 7b and 10b showed potent T-type calcium current blocking activity against Cav3.1 (α1G) and Cav3.2 (α1H) channel simultaneously. With hERG and pharmacokinetics studies, compounds 7b and 10b were evaluated for the antinociceptive effect on rat model of neuropathic pain. They were significantly effective in decreasing the pain responses to mechanical and cold allodynia induced by spinal nerve ligation. These results suggest that modulation of α1G and α1H subtype T-type calcium channels may provide a promising approach for the treatment of neuropathic pain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call