Abstract

BackgroundSigma2 (σ2) receptors are highly expressed in cancer cell lines and in tumours. Two novel selective 18F-phthalimido σ2 ligands, 18F-SIG343 and 18F-SIG353, were prepared and characterised for their potential tumour imaging properties.MethodsPreparation of 18F-SIG343 and 18F-SIG353 was achieved via nucleophilic substitution of their respective nitro precursors. In vitro studies including radioreceptor binding assays in the rat brain membrane and cell uptake studies in the A375 cell line were performed. In vivo studies were carried out in mice bearing A375 tumours including positron emission tomography (PET) imaging, biodistribution, blocking and metabolite studies.ResultsIn vitro studies showed that SIG343 and SIG353 displayed excellent affinity and selectivity for σ2 receptors (Ki(σ2) = 8 and 3 nM, σ2:σ1 = 200- and 110-fold, respectively). The σ2 selectivity of 18F-SIG343 was further confirmed by blocking studies in A375 cells, however, not noted for 18F-SIG353. Biodistribution studies showed that both radiotracers had similar characteristics including moderately high tumour uptake (4%ID/g to 5%ID/g); low bone uptake (3%ID/g to 4%ID/g); and high tumour-to-muscle uptake ratios (four- to sevenfold) up to 120 min. Although radiotracer uptake in organs known to express σ receptors was significantly blocked by pre-injection of competing σ ligands, the blocking effect was not observed in the tumour. PET imaging studies indicated major radioactive localisation in the chest cavity for both ligands, with approximately 1%ID/g uptake in the tumour at 120 min. Metabolite studies showed that the original radiotracers remained unchanged 65% to 80% in the tumour up to 120 min.ConclusionsThe lead ligands showed promising in vitro and in vivo characteristics. However, PET imaging indicated low tumour-to-background ratios. Furthermore, we were unable to demonstrate that uptake in the A375 tumour was σ2-specific. 18F-SIG343 and 18F-SIG343 do not display ideal properties for imaging the σ2 receptor in the A375 tumour model. However, since the radiotracers show promising in vitro and in vivo characteristics, longer scans using appropriate half-life isotopes and alternative tumour models will be carried out in future studies to fully validate the imaging characteristics of these radiotracers.

Highlights

  • Sigma2 (σ2) receptors are highly expressed in cancer cell lines and in tumours

  • Radiochemistry Radiotracers 18F-SIG343 and 18F-SIG353 were synthesised by aromatic nucleophilic substitution of their respective nitro precursors, (1) and (2) (Scheme 2), using potassium carbonate and Kryptofix 222 in DMF at 140°C for 5 min

  • The σ2 receptor is overexpressed in a variety of human tumour cell lines and is a biomarker for tumour cell proliferation, making it an attractive target for the development of new radiotracers for tumour detection and assessment of proliferative status using positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging

Read more

Summary

Introduction

Sigma (σ2) receptors are highly expressed in cancer cell lines and in tumours. Two novel selective 18F-phthalimido σ2 ligands, 18F-SIG343 and 18F-SIG353, were prepared and characterised for their potential tumour imaging properties. Recent data have implicated that σ2 binding sites is likely to be the progesterone receptor membrane component 1 (PMRMC1) or within PMRMC1 complex which shares homology with cytochrome b5, a heme-binding protein that activates cytochrome P450 proteins [18]. This finding suggested an involvement of σ2 receptors in progesterone signalling and lipid and drug metabolism [19], and is in agreement with the hypothesis previously postulated by a number of original reports [12,20,21,22,23,24,25]. The finding remains to be clarified due to the discrepancies in molecular weights, opposite responses to PMRCM1 antibody or σ2 receptor antagonists and binding to P450 enzymes of PMRCM1 and σ2 receptors [26]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.