Abstract

Pregnane derivatives are studied as agents for the treatment of different hormone-dependent diseases. The biological importance of these steroids is based on their potential use against cancer. In this study, we report the synthesis, characterization and biological activity of two pregnane derivatives with a triazole (3β-hydroxy-21-(1H-1,2,4-triazol-1-yl)pregna-5,16-dien-20-one; T–OH) or imidazole (3β-hydroxy-21-(1H-imidazol-1-yl)pregna-5,16-dien-20-one; I–OH) moieties at C-21. These derivatives were synthesized from 16-dehydropregnenolone acetate. The activity on cell proliferation of the compounds was measured on three human cancer cells lines: prostate cancer (PC-3), breast cancer (MCF7) and lung cancer (SK-LU-1). The cytotoxic and antiproliferative effects of T–OH and I–OH were assessed by using SBR and XTT methods, respectively. The gene expressions were evaluated by real time PCR. In addition, results were complemented by docking studies and transactivation assays using an expression vector to progesterone and androgen receptor.Results show that the two compounds inhibited the three cell lines proliferation in a dose-dependent manner. Compound I–OH downregulated the gene expression of the cyclins D1 and E1 in PC-3 and MFC7 cells; however, effect upon Ki-67, EAG1, BIM or survivin genes was not observed. Docking studies show poor interaction with the steroid receptors. Nevertheless, the transactivation assays show a weak antagonist effect of I–OH on progesterone receptor but not androgenic or antiandrogenic actions.In conclusion, the synthesized compounds inhibited cell proliferation as well as genes key to cell cycle of PC-3 and MCF7 cell lines. Therefore, these compounds could be considered a good starting point for the development of novel therapeutic alternatives to treat cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.