Abstract

Five photoactive derivatives of erythromycin have been synthesized by linking to 9(S)-aminoerythromycin either an aryl azide or a p-nitrophenyl ether. One derivative is an amide formed by reaction with (5-azido-2-formyl-phenoxy)acetic acid. Three derivatives are also amides, synthesized with 4-(p-nitroguaiacoxy)butanoic acid as a photoreactive group either directly or by interposing an amino acid (glycine or tyrosine). The last derivative is the product of the aldehyde condensation of aminoerythromycin with 10-(p-nitroguaiacoxy)decanal. Two of these derivatives can easily be made radioactive for affinity labeling studies either by reduction with [3H]borohydride (aryl azide derivative) or by 125I iodination (4-(p-nitroguaiacoxy)tyrosyl derivative). Although affected to different extents, the five erythromycin derivatives are biologically active and bind to the erythromycin-specific site on the bacterial ribosomes. In addition, the introduction of these groups changes the erythromycin inhibition pattern of peptide bond model reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.