Abstract

Syntheses are described of the Hyp3-tuftsin analogue and of its derivatives alpha- or beta-O-glycosylated at the side chain function of the hydroxyproline residue. The carbohydrate-free tetrapeptide was prepared by reacting Z-Thr-Lys(Z)-OH with H-Hyp-Arg(NO2)-OBzl by the mixed anhydride procedure. In the synthesis of the alpha-glycosylated analogue the O-glycosyl amino acid was incorporated by reacting Boc-(Glc alpha+beta)Hyp-OH with H-Arg(NO2)-OBzl through the same procedure. The alpha-glucosylated dipeptide was isolated from the diastereomeric mixture, selectively deblocked, and acylated with Z-Thr-Lys(Z)-OH by the mixed anhydride procedure. In the preparation of the beta-glucosylated analogue the BOP procedure was used for reacting Boc-[Glc(Ac)4 beta]Hyp-OH with H-Arg(NO)2-OBzl was well as for the final coupling to tetrapeptide. Removal of protecting groups from crude tetrapeptides was achieved by catalytic hydrogenation. Deacetylation of the sugar moiety of the beta-glucosylated tetrapeptide was achieved by treatment with sodium methoxide in methanol. The synthetic compounds were isolated by ion exchange chromatography, and characterized by elemental analysis, amino acid analysis, optical rotation and proton NMR. Their capacity to evoke the release of interleukin 1 from mouse peritoneal macrophages and to modulate immunogenic activity of antigen-fed cells was evaluated, in comparison with tuftsin and rigin. All of the analogues were found to possess tuftsin-like activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call