Abstract

A deoxyribonucleic acid (DNA) fragment encoding the cholera toxin B subunit (CTB) was linked 5' to the simian immunodeficiency virus (SIVmac) Gag p27 capsid gene (CTB-Gag). The fusion gene was transferred into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation methods and transformed plants regenerated. The CTB-Gag gene fusion was detected in transformed potato leaf genomic DNA by polymerase chain reaction-mediated DNA amplification. The results of immunoblot analysis with anti-CTB and anti-Gag antibodies verified the synthesis of biologically active CTB-Gag fusion protein in transformed leaf and tuber tissues. Synthesis and assembly of the CTB-Gag fusion protein into oligomeric structures of pentamer size was confirmed by GM1-ganglioside-enzyme-linked immunosorbent assay (GM1-ELISA) of transformed potato tuber tissue extracts. The binding of CTB-Gag fusion protein oligomers to intestinal epithelial cell membrane receptors quantified by GM1-ELISA showed that CTB-Gag fusion protein made up approx 0.016-0.022% of the total soluble tuber protein. The synthesis of CTB-Gag monomers and their assembly into biologically active CTB-Gag fusion protein oligomers in potato tuber tissues provides the opportunity for employment of the carrier and adjuvant properties of CTB for the development of edible plant-based subunit mucosal vaccines for enhanced mucosal immunity against SIV in macaques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.