Abstract

The physicochemical properties of aqueous solutions of novel anionic heterogemini surfactants (POH- n-ODAm) have been studied on the basis of static/dynamic surface tension, fluorescence, dynamic light scattering (DLS) and cryogenic transmission electron microscope (cryo-TEM) data. The surfactants are synthesized from oleic acid: the hydrocarbon chain ( n = 6, 8 and 10) is covalently bound to the terminal carbonyl group and a phosphate headgroup is introduced to the cis double bond of an oleic acid derivative. The static surface tension and fluorescence measurements demonstrate that the critical aggregation concentration (cac) is decreased significantly with increasing hydrocarbon chain length, resulting from the increased hydrophobicity and the increased degree of dissymmetry of the surfactants. As is generally seen for gemini surfactants, the measured cac is much lower than that of the monomeric phosphate-type surfactant reported previously. At concentrations well above the cac, the heterogemini surfactants spontaneously form vesicular assemblies in bulk solution, which is confirmed with DLS and cryo-TEM measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.