Abstract

The perovskites used for optoelectronic devices have been more attractive during recent years due to their wide variety of advantages, such as their low cost, high photoluminescence quantum yield (PLQY), high carrier mobility, flexible bandgap tunability, and high light absorption ability. However, optoelectronic applications for traditional inorganic and organic materials present dilemmas due to their hardly tunable bandgap and instability. On the other hand, there are some more important benefits for perovskite nanocrystals, such as a size-dependent bandgap and the availability of anion exchange at room temperature. Therefore, perovskite NC-based applications are currently favored, offering a research direction beyond perovskite, and much research has focused on the stability issue and device performance. Thus, the synthesis and applications of perovskite NCs need to be thoroughly discussed for the future development of solar cells, light-emitting diodes, photodetectors, and laser research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call