Abstract

The continuous increase in water pollution by various organic & inorganic contaminants has become a major issue of concern worldwide. Furthermore, the anthropogenic activities for the manufacturing of various products have boosted this problem manifold. To overcome this serious issue, nanotechnology has initiated to explore various proficient strategies to treat waste water in a more precise and accurate way with the support of various nanomaterials. In recent times, nanosized materials have proved their applicability to provide clean and affordable water treatment technologies. The exclusive features such as high surface area and mechanical properties, greater chemical reactivity, lower cost and energy, efficient regeneration for reuse allow the nanomaterials perfect for water remediation. But the conventional routes of synthesis of nanomaterials encompass the involvement of hazardous and volatile chemicals; therefore the use of nanomaterials further creates the secondary pollution. This issue has intrigued the scientists to develop biogenic pathways and procedures which are environmentally safer and inexpensive. It has led to the new trends that involve developing bio-inspired nano-scale adsorbents and catalysts for the removal and degradation of a wide range of water pollutants. Carbohydrates, proteins, polymers, flavonoids, alkaloids and several antioxidants obtained from plants, bacteria, fungi, and algae have proven their effectiveness as capping and stabilizing agents during manufacture of nanomaterials. Application of biogenic nanomaterials for waste water treatment is relatively newer but rapidly escalating area of research. In the present review, promises and challenges for the synthesis of various biogenic nanomaterials and their potential applications in waste water treatment and/or water purification have been discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.