Abstract

Arsenic contamination has threatened water safety due to its high toxicity and carcinogenicity. Therefore, it is urgent and significant to develop simple and effective approach for dearsenification of drinking water. In present study, Zn/Ce bimetallic oxide particles of various atomic ratios were synthesized by sol-gel process and were applied for adsorption of arsenite from aqueous solutions. The Zn/Ce bimetallic oxide of atomic ratio Zn0.2:Ce0.05 shows better adsorption proficiency in comparison to their monometallic counterparts as well as synthesized bimetal oxides of other atomic ratios. Sorption behavior of arsenite on Zn/Ce bimetal oxide was investigated through batch experiments and optimum conditions were found to be pH = 7.5, adsorbent dose = 0.36 g/L, and contact time = 30 min. The arsenite adsorption data was explained by Langmuir isotherm model and maximum adsorption capacity found to reaching 88.49 mg/g at 318 K. Adsorption mechanism was interpreted using FTIR and XPS data, the former suggesting formation of bond between As(III)Zn/Ce oxide nanoparticles while, latter reveals presence of both As(III) and As(V) peak which further infer that some fraction of As(III) may be get oxidized to As(V) by O2 based on Ce3+ as electron mediation agent between As(III) and O2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.