Abstract

Sugarcane bagasse cellulose succinate trimellitate (SBST) was prepared by a one-pot synthesis method. The synthesis of this novel mixed ester was investigated by a 23-factorial design. The parameters investigated were time, temperature, and succinic anhydride mole fraction (χSA). The responses evaluated were the adsorption capacity (qCo2+ and qNi2+), weight gain (wg), and number of carboxylic acid groups (nT,COOH). 13C Multiple Cross-Polarization solid-state NMR spectroscopy, 1H NMR relaxometry, and Fourier-transform infrared spectroscopy were used to elucidate the SBST structure. The best SBST reaction conditions were 100 °C, 660 min, and χSA of 0.2, which yielded SBST with a wg of 57.1%, nT,COOH of 4.48 mmol g−1, and qCo2+ and qNi2+ of 0.900 and 0.963 mmol g−1, respectively. The maximum adsorption capacities (Qmax) (pH 5.75, 25 °C) estimated by the Redlich-Peterson model for Co2+ and Ni2+ were 1.16 and 1.29 mmol g−1. The ΔadsH° values for Co2+ and Ni2+ adsorption obtained by isothermal titration calorimetry were 8.03 and 6.94 kJ mol−1. Regeneration and reuse of SBST were investigated and the best conditions applied for fixed-bed column adsorption in five consecutive cycles. SBST was fully desorbed and Qmax values for Co2+ (0.95 mmol g−1) and Ni2+ (1.02 mmol g−1) were estimated using the Bohart-Adams model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.