Abstract
In the current research, MCM-41 was successfully prepared by the sol-gel method and lead ions (Pb2+) were loaded in the synthesized MCM-41 mesoporous structure to prepare Pb-MCM-41. The ZnO-NiO nanoparticles (ZnNiO2 NPs) as a type of bimetallic oxides were then dispersed and deposited on the surface of Pb-MCM-41 through indirect method to gain the final Pb-MCM-41/ZnNiO2 nanocomposite adsorbent. The characterization study of samples carried out by SEM-EDAX, AFM, XRD and FTIR techniques. Pb-MCM-41/ZnNiO2 nanocomposite as a destructive adsorbent has been proposed for the first time for the decontamination process of chloroethyl phenyl sulfide (CEPS), a mimic of bis(chloroethyl) sulfide (i.e. sulfur mustard), and were confirmed using GC-FID, GC–MS and FTIR instruments. Besides, the effect of different experimental parameters including contact time, catalyst dose and initial concentration of CEPS on the decontamination efficiency of this agent simulant were also perused. The GC-FID analysis results verified that the maximum decontamination of CEPS was more than 90% yield. The parameters such as: contact time (240min), adsorbent dose (0.4g/L), and initial concentration (10mg/L) were investigated and considered as optimized conditions for the noted reaction. Moreover, the reaction kinetic information was surveyed by employing first order model. The values of the rate constant (k) and half-life (t1/2) were determined as 0.0128min−1 and 54.1406min, and 0.0012min−1 and 577.5min for CEPS and its hydrolysis/elimination products, respectively. Data demonstrates the role of the hydrolysis and elimination products, i.e. hydroxy ethyl phenyl sulfide (HEPS) and phenyl vinyl sulfide (PVS) in the reaction of CEPS with Pb-MCM-41/ZnNiO2 nanocomposite and GC–MS analysis was exerted to identify and quantify simulant destruction products. It was clarified that Pb-MCM-41/ZnNiO2 nanocomposite gains a high capacity and potential for the effective decontamination of CEPS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.