Abstract

A highly efficient process of aerobic oxidative coupling of 2-naphthol derivatives catalyzed by Cu(OH)Cl.TMEDA has been developed. Enantioselective oxidative coupling of 2-naphthol derivatives was achieved by the use of a chiral catalyst prepared from proline-derived diamine and cuprous chloride, affording the corresponding BINOL derivatives in good enantioselectivities of up to 78% ee. A new catalytic, enantioselective allylation of aldehydes with allyltrichlorosilanes exploiting (S)-3,3'-dimethyl-2,2'-biquinoline N,N'-dioxide as a catalyst affords homoallylic alcohols in virtually complete diastereoselectivities and high enantioselectivities of up to 92% ee, wherein the use of diisopropylethylamine as an additive has proven to be crucial for the acceleration of the catalytic cycle. It is also noteworthy that the above finding represents the first successful example of asymmetric reactions utilizing amine N-oxide as a chiral catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.