Abstract

Waterborne polyurethanes (WPUs) often have limitations like inadequate weathering resistance and thermal stability. To overcome these shortcomings, lignin has been selected as a modifier for its abundant availability, renewability, and biocompatibility. This study synthesized a cationic WPU using isophorone diisocyanate and polyethylene glycol as raw materials. Hydrophilicity was attained through the inclusion of dihydroxyethyl dodecylamine as a chain extender, while the introduction of epoxy monomers and lignin served to modify the polyurethane. Furthermore, a dye dispersion for cotton fabric dyeing was prepared by combining the synthesized polyurethane, chitosan, and dyes. The cationic nature of the polyurethane played a crucial role in facilitating dye adhesion and uptake on the fabric surface, resulting in improved dyeing performance. The incorporation of epoxy side chains and chitosan cross-linking contributed to the excellent color fastness of the dyed fabrics. Moreover, the incorporation of lignin and chitosan endowed the fabric with antibacterial properties. Simultaneously, it provided effective UV protection, characterized by a high UV protection factor value for the fabrics. This lignin-modified WPU exhibits tremendous potential in applications such as textile coatings, adhesives, and color fixation agents. It effectively addresses the limitations of traditional WPUs and offers notable advantages, including a renewable source, cost-effectiveness, and biocompatibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.