Abstract

Interstrand cross-linking of DNA or RNA inhibits the double strands from dissociating into single strands. This article contains detailed procedures for the synthesis of a novel interstrand cross-linker that comprises a bis-aminooxy naphthalene derivative and a description of its use in the preparation of sequence-specific interstrand cross-linked oligonucleotide duplexes. The interstrand cross-linker covalently connects a pair of apurinic/apyrimidinic sites in DNA/RNA duplexes with bis(aminooxy) groups. The resulting oxime linkages are stable under physiological conditions and greatly improve the thermal stability of the duplex. In addition, we construct a novel anti-miRNA oligonucleotide (AMO) flanked by interstrand cross-linked 2'-O-methylated RNA duplexes (CLs). AMO flanked by CLs at the 5'- and 3'-termini exhibited high inhibition activity toward miRNA function in cells. The novel interstrand cross-linker indicates potent activity and is applicable in biophysical studies, oligonucleotide therapeutics, and materials science. © 2018 by John Wiley & Sons, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call