Abstract

Novel Ag@Ni nanosphere decorated with CdS NPs (Ag@Ni-CdS NCs) was synthesized by one step chemical synthesis method. The fabricated NCs were characterized by transmission electron microscope (TEM), scanning electron microscope (SEM), fourier transfer infra-red spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), zeta sizer and particle size analyzer. TEM and XRD confirmed the Ag in core and Ni in shell for the effective formation of Ag@Ni core shell nanosphere. EDAX and XPS spectra of NCs confirms the formation of Ag@Ni-CdS NCs. Zeta potential and particle size of the NCs was found to be 29.5 ± 1.5 mV and 24 ± 1 nm respectively. The complete loss in the peak intensity of Ag@Ni-CdS NCs (localized surface plasmon resonance (LSPR)) at ∼410 nm in presence of S2− ions was observed which indicates its selective detection towards S2− ions. The sulfide ion sensing by Ag@Ni-CdS NCs was due to the successive oxidation of Ag results in the formulation of Ag2+ ions in the system, which causes the diminishing of LSPR band of NCs. The limit of detection (LOD) of S2− ions by Ag@Ni-CdS NCs was calculated to be of 2.66 nM. The combination of CdS NPs with core–shell Ag@Ni nanosphere guides a promising strategy for S2− ions detection from environmental polluted samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call