Abstract

Carbocyclic nucleoside analogues are catabolically stable since they are resistant to phosphorolytic cleavage by pyrimidine nucleoside phosphorylase enzymes. The carbocyclic analogue (C-BCNA) of the highly potent and selective anti-VZV bicyclic nucleoside analogue (BCNA) 6-pentylphenylfuro[2,3-d]pyrimidine-2'-deoxyribose was synthesized using carbocyclic 2'-deoxyuridine as starting material. C-BCNA was found to be chemically more stable than the furano lead, but it was shown to be significantly less antivirally active than its parent nucleoside analogue. It was noted to have a 10-fold lower inhibitory activity against the VZV-encoded thymidine kinase. This reduction of activity may be attributed to the different conformation of the sugar and base, as predicted by computational studies and supported by NMR studies. However, other factors besides affinity for VZV-TK must account for the greatly reduced antiviral potency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.