Abstract

A novel series of 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines were designed and synthesized as potential nonclassical antifolates targeting both thymidylate and purine nucleotide biosynthesis. Condensation of 2,4-diamino-6-hydroxypyrimidine with ethyl-4-chloroacetoacetate and subsequent hydrolysis afforded the key intermediate, 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidin-6-yl-acetic acid. Coupling with various amino acid methyl esters followed by saponification and condensation with 3-(aminomethyl)pyridine provided target compounds 1–9. The new compounds exhibited micromolar to submicromolar antiproliferative potencies against a panel of tumor cell lines including KB, A549 and HepG2. Growth inhibition of compound 2 toward KB cells resulted in cytotoxicity and G1/G2-phase accumulation, and was partially protected by excess thymidine and adenosine, but was completely reversed in the combination of thymidine and adenosine, indicating both thymidylate and de novo purine nucleotide synthesis as the targeted pathway. However, 5-aminoimidazole-4-carboxamide (AICA) protection was incomplete, suggesting inhibition of both glycinamide ribonucleotide formyltransferase (GARFTase) and AICA ribonucleotide formyltransferase (AICARFTase). The results of the docking studies show that 2 could bind and inhibit both thymidylate synthase (TS) and the two folate-dependent purine biosynthetic enzymes (GARFTase and AICARFTase), which is consistent with the results of in vitro metabolic assays. Our studies establish that compound 2 is an excellent lead analog as a multitargeted antifolate for further structure optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.