Abstract

To ascertain whether increasing hydrophobicity can enhance the activity of second-generation antisense oligonucleotides (ASOs) in muscle, we investigated the antisense properties of 2'-O-(2S-methoxypropyl)-RNA (2S-MOP)-modified ASOs. Synthesis of the 2S-MOP 5-methyl uridine phosphoramidite was accomplished on a multi-gram scale by Lewis-acid-catalyzed ring opening of 5'-O-tert-butyldiphenylsilyl ether-protected 2,2'-anhydro-5-methyl uridine with 2S-methoxy-1-propanol. Synthesis of the 2S-MOP 5-methyl cytidine nucleoside from the corresponding 5-methyl uridine nucleoside was accomplished by formation and displacement of a 4-triazolide intermediate with aqueous ammonia. 2S-MOP-modified oligonucleotides were prepared on an automated DNA synthesizer and showed similar enhancements in duplex thermal stability as 2'-O-methoxyethyl RNA (MOE)-modified oligonucleotides. 2S-MOP-containing antisense oligonucleotides were evaluated in Balb-c mice and showed good activity for decreasing the expression levels of scavenger receptor B1 (Srb1) and phosphatase and tensin homologue (PTEN) mRNA in liver and muscle tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.