Abstract

Chloroquine is commonly used in the treatment and prevention of malaria, but Plasmodium falciparum, the main species responsible for malaria-related deaths, has developed resistance against this drug. Twenty-seven novel chloroquine (CQ) analogues characterized by a side chain terminated with a bulky basic head group, i.e., octahydro-2H-quinolizine and 1,2,3,4,5,6-hexahydro-1,5-methano-8H-pyrido[1,2-a][1,5]diazocin-8-one, were synthesized and tested for activity against D-10 (CQ-susceptible) and W-2 (CQ-resistant) strains of P. falciparum. Most compounds were found to be active against both strains with nanomolar or sub-micromolar IC50 values. Eleven compounds were found to be 2.7- to 13.4-fold more potent than CQ against the W-2 strain; among them, four cytisine derivatives appear to be of particular interest, as they combine high potency with low cytotoxicity against two human cell lines (HMEC-1 and HepG2) along with easier synthetic accessibility. Replacement of the 4-NH group with a sulfur bridge maintained antiplasmodial activity at a lower level, but produced an improvement in the resistance factor. These compounds warrant further investigation as potential drugs for use in the fight against malaria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.