Abstract
In the current study, two organic salts (1 and 2) are synthesized, and then crystalline structures are characterized by FTIR, UV spectroscopy, and X-ray crystallographic studies. The organic salts 1 and 2 are optimized at the M06/6-311G(d,p)level of theory and further utilized for analysis of natural bond orbitals (NBOs), natural population, frontier molecular orbitals (FMOs), and global reactivity parameters, which confirmed the stability of the studied compounds and charge transfer phenomenon in the studied compounds. The studies further revealed that 1 and 2 are more stable than 3. The lowest energy merged monomer-coformer conformations were docked as flexible ligands with rigid fungal proteins and DNA receptors. The stagnant binding of the monomer through two H bonds with protein was observed for ligands 1 and 3 while different pattern was found with 2. The coformers formed a single H bond with the active site in 2 and 3 and a single pi-arene H interaction in 1. The two-point ligand-receptor interactions hooked the monomer between DNA base pairs for partial intercalation; pi stacking with additive hydrogen bonding with the base pair led to a strong benzimidazole interaction in 1 and 2, whereas ethylene diamine formed weak H bonding. Thus, the molecular docking predicted that the coformer exhibited DNA intercalation reinforced by its salt formation with benzimidazole 1 and methyl benzimidazole 2. Antioxidant studies depicted that 3 has a higher IC50 value than that of 2,4-D and also the largest value among the studied compounds, whereas 2 showed the lowest value among the studied compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.