Abstract

The aminoglycoside antibiotics bind to the 16S bacterial rRNA and disturb the protein synthesis. One to four hydroxyl functions of the small aminoglycoside neamine were capped with phenyl, naphthyl, pyridyl, or quinolyl rings. The 3',4'- (6), 3',6- (7a), and the 3',4',6- (10a) 2-naphthylmethylene derivatives appeared to be active against sensitive and resistant Staphylococcus aureus strains. 10a also showed marked antibacterial activities against Gram (-) bacteria, including strains expressing enzymes modifying aminoglycosides, efflux pumps, or rRNA methylases. 7a and 10a revealed a weak and aspecific binding to a model bacterial 16S rRNA. Moreover, as compared to neomycin B, 10a showed a lower ability to decrease (3)H leucine incorporation into proteins in Pseudomonas aeruginosa. All together, our results suggest that the 3',4',6-tri-2-naphthylmethylene neamine derivative 10a should act against Gram (-) bacteria through a mechanism different from inhibition of protein synthesis, probably by membrane destabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.