Abstract

Due to the increasing problem of bacterial resistance worldwide, the demand for new antibiotics is becoming increasingly urgent. We wished to: (a) prepare hybrid molecules by linking different pharmacophores by chemical bonds; (b) investigate the antib acterial activity of these hybrids using drug-sensitive and drug-resistant pathogens in vitro and vivo. A series of hybrid molecules with a diester structure were designed and synthesized that linked amoxicillin and derivatives of benzoic acid via a methylene bridge. Synthesized compounds were evaluated for activities against Gram-positive bacteria (Staphylococcus aureus American Type Culture Collection [ATCC] 29213, ATCC 11632; methicillin-resistant S. aureus [MRSA] 11; Escherichia coli ATCC 25922) and Gram-negative bacteria (Salmonella LS677, GD836, GD828, GD3625) by microdilution of broth. Synthesized compounds showed good activity against Gram-positive and Gram-negative bacteria in vitro. In particular, amoxicillin-p-nitrobenzoic acid (6d) showed good activity against Salmonella species and had better activity against methicillin-resistant S. aureus (minimum inhibitory concentration [MIC] = 64 μg/ml) than the reference drug, amoxicillin (MIC = 128 μg/ml). Amoxicillin-p-methoxybenzoic acid (6b) had the best antibacterial activity in vivo (ED50 = 13.2496 μg/ml). The hybrid molecules of amoxicillin and derivatives of benzoic acid synthesized based on a diester structure can improve the activity of amoxicillin against Salmonella species and even improve the activity against MRSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call