Abstract

A series of pyrimidinophanes containing two uracil units and nitrogen atoms in bridging polymethylene chains –(CH2) n N(Et)(CH2) m – (n, m = 5, 6) have been synthesized. The uracil moieties are represented by 6-methyl-, 5-decyl-6-methyl-, and 5-fluorouracils. Quaternization of the bridging N atom with ethylbromide or n-decylbromide yielded amphiphilic pyrimidinophanes, which were evaluated for their antibacterial and antifungal activity in terms of minimal inhibiting concentration (MIC) against Gram-positive and Gram-negative bacteria and fungi. It has been found that MICs of the amphiphilic pyrimidinophanes decrease with increasing lipophilicity of the alkyl substituents at the bridging N atoms and with increasing polymethylene N(pyr)–N chain length (in some cases MIC against Staphylococcus aureus is below 1 ig/mL). The MICs increase dramatically upon introduction of lipophilic n-decyl substituents at C(5) atoms of the uracil moiety. The results can be used in the search for new highly effective antimicrobial agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.