Abstract
For the last two decades, diterpenoid isosteviol and its derivatives have gained significant attention for novel chemical transformation in the drug discovery field. An efficient way towards the synthesis of structurally diverse isosteviol derivatives was described here employing unsaturated functionalities as attractive templates for further transformation such as epoxidation. These structurally diverse compounds exhibited promising cytotoxic activities on different types of cancer cell lines, leading to drug discovery derived from natural products for the treatment of cancer. In this work, novel isosteviol derivatives with Michael acceptors were synthesized to expand the diversity and complexity of a class of isosteviol-derived triazole conjugates to facilitate the development of potential antitumor agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.