Abstract

Cancer treatment represents one of the main scientific study targets today, mainly due to the pronounced side effects arising from chemotherapy. This study reports the synthesis, characterization, and anticancer activity of ten compounds from the Morita-Baylis-Hillman reaction. Ethylene glycol diacrylate was used as a double Michael acceptor in reactions with isatin derivatives to give homodimers of 3-hydroxyindolin-2-one core, recognized in the literature for its extensive pharmacological profile. The use of 1,4-diazabicyclo[2,2,2]octane (DABCO) as a catalyst and room temperature were the optimal conditions for the study reaction. The isolated yields were up to 63%, with most reaction times inferior to 24 h, some as fast as 15 min. The anticancer potential of the synthesized dimers was evaluated in vitro against three cancer strains, resulting in average inhibitory concentrations up to 0.72 μM. It was also found that the best performing homodimers are more active than their monomeric counterparts. Considering the promising selectivity indices observed, the preliminary results obtained here act as a basis for broader tests regarding the effectiveness of homodimeric adducts against cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call