Abstract

Nanoparticles have gained significant attention in recent years due to their numerous applications in various aspects of human life. A variety of methods have been investigated for synthesis of nanoparticles among which, biogenic approaches are considered as both simple and eco-friendly. Here, a new single-step biological approach was employed for synthesis of silver chloride nanoparticles (AgCl-NPs) at room temperature, using walnut green husk extract. Macromolecules present in the plant extract, which might act as bio-reductants and/or stabilisers of nanoparticles were characterised by Fourier transform Infrared spectroscopy. X-ray diffraction pattern and transmission electron microscopy revealed that 1 mM of AgNO3 produced mostly spherical nanoparticles in a range of 4–30 nm in diameter with an average of 16 nm. Interestingly, the synthesised nanoparticles showed significant inhibitory effects against Escherichia coli and Staphylococcus aureus clinical isolates. Altogether, these data suggest a new encouraging application of a medicinal plant bound with synthesised AgCl nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.