Abstract
Pyran-4-one and chromenone are well known bioactive compounds, particularly antimicrobial activity. Present study investigation antibacterial activity of pyranone connected chromenone derivatives. New synthesis of pyrano[3,2-g]chromene-4,6-dione derivatives were synthesized via catalysis free eco-friendly method. Synthesized compounds were characterized by FTIR, 1H NMR, 13C NMR, and mass spectral analysis. An entirely new synthesis of pyrano[3,2-g]chromene-4,6-dione derivatives (1a–o) were studied for their in vitro antibacterial properties. The gram-positive bacterium B. cereus was thought to be the most sensitive of the studied microorganisms, and compounds 1f, 1 g, 1 k, 1 l, and 1o demonstrated the best antibacterial action. The results of the antibacterial activities would suggest that 1 g was more effective against B. cereus (MIC: 0.5 μg/mL) than other compounds and Ciprofloxacin (MIC: 2 μg/mL). Against B. cereus bacterial pathogens, compound 1 g demonstrated exceptional antibacterial activity. The compound 1 g and Ciprofloxacin docked with 5V8E protein action of compound 1 g (-7.2 kcal/mol) and ciprofloxacin (-3.2 kcal/mol) is quite potent, and it also showed greater binding affinity. DFT calculation was well support the performance of energy gap between low and highly active compounds for 1 k (ΔE gap = 0.15 eV) and 1 g (ΔE gap = 0.16 eV), respectively. The lead molecules were used for antibacterial agent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.