Abstract

Curcumin is a multifunctional natural product with regulatory effects on inflammation. However, a major limitation for the application of curcumin is its poor bioavailability. We previously demonstrated that the mono-carbonyl analogues of curcumin possessed improved pharmacokinetic profiles. In this study, 33 novel mono-carbonyl analogues of curcumin were synthesized and their inhibition against TNF-α and IL-6 release was evaluated in LPS-stimulated RAW 264.7 macrophages. Based on the screening data, quantitative structure–activity relationship was conducted, indicating that electron-withdrawing groups in benzene ring are favourable to anti-inflammatory activities of B-class compounds. Furthermore, compounds AN1 and B82 demonstrated anti-inflammatory abilities in a dose-dependent manner. These raise the possibility that these compounds might serve as potential agents for the treatment of inflammatory diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.