Abstract

A chiral synthesis of a series of hexahydroisobenzofuran (HIBF) nucleosides has been accomplished via glycosylation of a stereo-defined (syn-isomer) sugar motif 16 with the appropriate silylated bases. All nucleoside analogs were obtained in 52-71% yield as a mixture of alpha- and beta-anomeric products increasing the breadth of the novel nucleosides available for screening. The structure of the novel bicyclic HIBF nucleosides was established by a single crystal X-ray structure of the beta-HIBF thymine analog 22b. Furthermore, the sugar conformation for these nucleosides was established as N-type. Among the novel HIBF nucleosides synthesized, twenty-five compounds were tested as inhibitor of HIV-1 in human peripheral blood mononuclear (PBM) cells and seven were found to be active (EC(50) = 12.3-36.2 microM). Six of these compounds were purine analogs with beta-HIBF inosine analog 22o being the most potent (EC(50) = 12.3 microM) among all compounds tested. The striking resemblance between didanosine (ddI) and 22o may explain the potent anti-HIV activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call