Abstract
Acetyl-coA carboxylase 1 (ACC1) is the first and rate-limiting enzyme in the de novo fatty acid synthesis (FASyn) pathway. In this study, through public database analysis and clinic sample test, we for the first time verified that ACC1 mRNA is overexpressed in non-small-cell lung cancer (NSCLC), which is accompanied by reduced DNA methylation at CpG island S shore of ACC1. Our study further demonstrated that higher ACC1 levels are associated with poor prognosis in NSCLC patients. Besides, we developed a novel synthetic route for preparation of a known ACC inhibitor ND-646, synthesized a series of its derivatives and evaluated their activity against the enzyme ACC1 and the A549 cell. As results, most of the tested compounds showed potent ACC1 inhibitory activity with IC50 values 3–10 nM. Among them, compounds A2, A7 and A9 displayed strong cancer inhibitory activity with IC50 values 9–17 nM by impairing cell growth and inducing cell death. Preliminary SAR analysis clearly suggested that (R)-configuration and amide group were vital to ACC1 and A549 inhibition, since compound (S)-A1 (the enantiomer of ND-646) had poor activity of ACC1 inhibition and the carboxylic acid ND-630 almost lost anticancer effect on A549 cells. Collectively, these findings indicate that ACC1 is a potential biomarker and target for non-small-cell lung cancer, and ND-646 and its derivatives as ACC1 inhibitors deserve further study for treatment of NSCLC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.