Abstract

BackgroundBreast cancer is therapeutically very challenging to treat as it has the main four known genetic alterations, which result in the existence of several phenotypes leading to the difference in the mode of therapy and with poor outcome. Metallic nanoparticles of silver or copper have been studied previously as anticancer agents in breast cancer and other types of cancers. However, the anticancer effect of silver–copper alloy nanoparticles (AgCu-NP) is not studied in breast cancer. In this study, we aim to synthesize silver nanoparticles (Ag-NP), or copper nanoparticles (Cu-NP), and AgCu-NP and evaluate their toxicity in breast cancer and healthy breast cells.ResultsWe synthesized sodium citrate and mercapto-propionic acid (MPA-3) capped water-soluble metallic nanoparticles of Ag-NP or Cu-NP and an alloy of three different combinations of AgCu-NP. High-resolution transmission electron microscopy characterization of nanoparticles revealed the spherical shape nanoparticles of varied sizes, furthermore dynamic light scattering characterization was performed, which investigated the hydrodynamic size and stability in phosphate buffer solution. Energy-dispersive X-ray spectroscopy (EDS) measurements were obtained from the transmission electron microscope to study the composition of alloy nanoparticles and the distribution pattern of silver and copper in the alloy nanoparticles. We measured the toxicity of nanoparticles to breast cancer MCF-7 cell line by MTT assay and compared the toxic effect with non-cancerous breast epithelial cells MCF-10A. Our data showed that Ag-NP or Cu-NP have no effect on cancer cells or healthy cells, except Ag-NP at 20 µg/ml were toxic to cancer cells. However, AgCu-NP were significantly toxic to MCF-7 cells at 10 µg/ml concentration, while as AgCu-NP have no toxic effect on healthy cells. Furthermore, we observed the cell death pathway by the apoptosis marker Annexin-V which showed non-significant results, while the exposure of AgCu-NP in MCF-7 cells leads to toxicity and also caused significant increase in MMP-9 level, which suggests the cell death may be associated with other pathways such as autophagy and oxidative stress related.ConclusionThe data suggest that the AgCu-NP alloy imposes preferential toxicity in breast cancer MCF-7 cells and thus could be exploited as a new candidate for further anticancer investigation

Highlights

  • Breast cancer is therapeutically very challenging to treat as it has the main four known genetic alterations, which result in the existence of several phenotypes leading to the difference in the mode of therapy and with poor outcome

  • Synergistic effect of Silver and copper nanoparticles embedded in chitin has shown enhanced toxicity in MCF-7 cancer cells comparing to Silver nanoparticles (Ag-NP) or Copper nanoparticles (Cu-NP); this suggests that the formation of the Silver–copper nanoparticles (AgCu-NP) alloy may be a potent anticancer agent for MCF-7 breast cancer (Solairaj et al 2017)

  • The nanoparticles with the largest diameter were among the AgCu-NP was 70:30 (Ag)-NP, which were synthesized by the sodium borohydride method

Read more

Summary

Introduction

Breast cancer is therapeutically very challenging to treat as it has the main four known genetic alterations, which result in the existence of several phenotypes leading to the difference in the mode of therapy and with poor outcome. Metallic nanoparticles of silver or copper have been studied previously as anticancer agents in breast cancer and other types of cancers. The anticancer effect of silver– copper alloy nanoparticles (AgCu-NP) is not studied in breast cancer. We aim to synthesize silver nanoparticles (Ag-NP), or copper nanoparticles (Cu-NP), and AgCu-NP and evaluate their toxicity in breast cancer and healthy breast cells. Synergistic effect of Silver and copper nanoparticles embedded in chitin has shown enhanced toxicity in MCF-7 cancer cells comparing to Ag-NP or Cu-NP; this suggests that the formation of the AgCu-NP alloy may be a potent anticancer agent for MCF-7 breast cancer (Solairaj et al 2017)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.