Abstract
Nanotubes-based nanocomposites to be used as polymer reinforcing/flame-retardant additives are synthesized by decomposition of isobutane at 600 °C. Catalytic chemical vapor deposition (CCVD) is carried out over 17 wt%Fe-catalysts supported on various oxides (Al 2O 3, MgO, CaO, SrO or BaO) reduced at 600 °C. Catalysts utilized and carbonaceous deposits obtained are systematically characterized by the use of several analysis techniques, in order to investigate the influence of catalyst specifics on reaction yield, selectivity and characteristics (crystallinity and purity) of the grown nanotubes. The results show that the support greatly influences the catalyst performance. The lack of metallic iron renders Fe/SrO- and Fe/BaO-catalysts inactive. Fe/Al 2O 3 catalysts exhibit the highest catalytic activity, but give rise to scarce selectivity and large metallic impurity contents. Contrarily, using Fe/MgO and Fe/CaO catalysts leads to lower yields, but allows reducing impurities and remarkably improving selectivity and nanotube crystallinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.