Abstract

An abnormal structure of the ZnSe nanowheels composed of teethlike extended patterns on nanoring bases has been successfully synthesized by thermal evaporation method. It is interesting to note that the as-synthesized ZnSe nanowheels are metastable wurtzite phase with the dominant exposed surfaces of ±(21¯1¯0) while the stable ZnSe is typically zinc blende phase. A full picture of the growth mechanism of the metastable wurtzite phase ZnSe nanostructures will be proposed from the thermodynamic point of view. Meanwhile, the formation of the nanowheels is also explained by a two-stage mechanism. In the first stage, the base of the nanowheel begins to form by vapor-solid mechanism, while in the second stage, the teethlike extended structures grow through the self-catalyzed growth process. The cathodoluminescence spectrum of ZnSe nanowheel exhibited a band edge transition at about 460nm and a strong self-activated luminescence at 610nm. It is important to note that the discussions of the nanostructure thermodynamics and stability can be applied to understand the growth mechanism of other nanostructures which are critical for optimization of the nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.