Abstract

The kinematics decoupling for parallel manipulators is studied in this paper. Based on the topological structure characteristics of parallel mechanisms, the internal relationship between kinematics decoupling and basic kinematics chains is revealed, and the basic principle for structural synthesis of topologically decoupled mechanisms is put forward. Using this theory, a group of 3 degree-of-freedom (DOF) partially decoupled manipulators are synthesized. The expected kinematic outputs of these manipulators are 1-DOF translation and 2-DOF rotation, and motions along or about undesired directions do not exist. The kinematics analysis of a newly synthesized manipulator is discussed and the results indicate that the decoupling property of these architectures makes possible reaching real time control and path planning of parallel manipulators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call