Abstract

A series of new fluorine containing pyrido[2,3-d]pyrimidines and imidazo[1,2-c]pyrido[3,2-e]pyrimidines along with a series of bioisosteric fluorinated quinazolines were synthesised following appropriate synthetic schemes and characterised by spectral analytical means. X-ray crystal structure of the key precursor 1 (2-amino-3-cyano-4-trifluoro-methyl-6-phenyl-pyridine) was also determined to gain insight into its reactivity. Binding affinity data of all the compounds for adenosine receptors (ARs) showed that pyrido[2,3-d]pyrimidine scaffold with free amino (NH2) group at 2- and 4-position (2a) exhibited the maximum binding affinity for hA3 AR with similar affinity for the hA1 and somewhat lower affinity for hA2A ARs resulting in a compound with no A3 selectivity vs. A1 and moderate selectivity vs. A2A AR (K i hA1 = 0.62 µM, hA2A = 3.59 µM and hA3 = 0.42 µM). Interestingly, the replacement of both the amino groups with carbonyl (C=O) groups (compound 4) resulted in significantly improved affinity for hA1 AR but with moderate selectivity against hA2A and hA3 ARs (K i hA1 = 0.17 µM, hA2A = 0.67 µM and hA3 = 0.68 µM). In case of fluorinated quinazolines, only compound 18a showed remarkable affinity for hA1 AR with significant selectivity against hA2A and hA3 ARs (K i hA1 = 0.73 µM, hA2A > 30 µM and hA3 = 9.27 µM). The preliminary results of these compounds demonstrate that the fluorinated pyrido[2,3-d]pyrimidine and imidazo[1,2-c]pyrido[3,2-e]pyrimidine can be considered as promising scaffolds for further optimisation in search of potential antagonists with better affinity and selectivity towards hA1 and hA3 ARs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call