Abstract

Cyanobacteria harmful algal blooms are of global concern, but all currently available algicides in the market are nonselective and have potential side effects on nontarget species. In the present work, two series of compounds (4 and 6) comprising 16 novel 1,2,3-triazole aminopyrimidines were rationally designed and synthesized as control agent for cyanobacteria. Our design focus was the inhibiting cyanobacteria by inhibition against pyruvate dehydrogenase complex E1 (PDHc-E1). Compounds 4 and 6 showed potent inhibition against Escherichia coli PDHc-E1 (IC50 = 4.13-23.76 μM) and also strong algicidal activities against Synechocystis sp. PCC 6803 (EC50 = 1.7-8.1 μM) and Microcystis sp. FACHB905 (EC50 = 2.1-11.8 μM). In particular, the algicidal activities of 6d against four algal species were not only higher than that of prometryn; they were also comparable to or higher than that of copper sulfate. The analogues 4c, 4d, 6d, and 6e displayed potent algicidal activities and inhibition of E. coli PDHc-E1 but exhibited negligible inhibition of porcine PDHc-E1. As revealed by molecular docking, site-directed mutagenesis, enzymatic assays, and an inhibition kinetic analysis, 4c and 6d inhibited PDHc-E1 in a competitive manner. Our results suggest that highly selective, effective algicides can be developed by rationally designing competitive PDHc-E1 inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.