Abstract

PEG-based hydrogels are used widely in exploratory tissue engineering applications but in general lack chemical and structural diversity. Additive manufacturing offers pathways to otherwise unattainable scaffold morphologies but has been applied sparingly to cross-linked hydrogels. Herein, mono methyl ether poly(ethylene glycol) (PEG) and PEG-diol were used to initiate the ring-opening copolymerization (ROCOP) of maleic anhydride and propylene oxide to yield well defined diblock and triblock copolymers of PEG-poly(propylene maleate) (PPM) and ultimately poly(propylene fumarate) (PPF) with different molecular mass PEG macroinitiators and block length ratios. Using continuous digital light processing (cDLP) hydrogels were photochemically printed from an aqueous solution which resulted in a 10-fold increase in elongation at break compared to traditional diethyl fumarate (DEF) based printing. Furthermore, PPF-PEG-PPF triblock hydrogels were also found to be biocompatible in vitro across a number of engineered MC3T3, NIH3T3, and primary Schwann cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.